Geim, AK & Novoselov, KS The Rise of Graphene. Nat. Mater. 6183-191 (2007).
Google Scholar
Wang, QH, Kalantar-Zadeh, K., Kis, A., Coleman, JN & Strano, MS Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnology. seven699-712 (2012).
Google Scholar
Li, L et al. Black phosphorus field effect transistors. Nat. Nanotechnology. 9372–377 (2014).
Google Scholar
Novoselov, KS et al. Electric field effect in atomically thin carbon films. Science 306666–669 (2004).
Google Scholar
Fan, Q. et al. Biphenylene network: a non-benzenoid carbon allotrope. Science 372852–856 (2021).
Google Scholar
Kolmer, M. et al. Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces. Science 369571–575 (2020).
Google Scholar
Yu, H., Xue, Y. & Li, Y. Graphdiyne and its assembly architectures: synthesis, functionalization and applications. Adv. Mater. 31e1803101 (2019).
Google Scholar
Bakharev, PV et al. Chemically induced transformation of bilayer graphene grown by chemical vapor deposition into fluorinated monolayer diamond. Nat. Nanotechnology. 1559–66 (2020).
Google Scholar
Toh, CT et al. Synthesis and properties of self-supporting monolayer amorphous carbon. Nature 577199-203 (2020).
Google Scholar
Cui, X et al. Wind up transition metal dichalcogenide nanoscrolls via a drop of ethanol. Nat. Common. 91301 (2018).
Google Scholar
Wan, J. et al. Ultra-thin solid electrolyte interphase evolution and crumpling process in lithium-ion batteries based on molybdenum disulfide. Nat. Common. ten3265 (2019).
Google Scholar
Hirsch, A. The era of carbon allotropes. Nat. Mater. 9868–871 (2010).
Google Scholar
Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. seven845–854 (2008).
Google Scholar
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 55643–50 (2018).
Google Scholar
Zhai, HJ et al. Observation of an all boron fullerene. Nat. Chem. 6727-731 (2014).
Google Scholar
Jena, P. & Sun, Q. Atomic Superclusters: Design Rules and Potential for Material Building Blocks. Chem. Round. 1185755–5870 (2018).
Google Scholar
Blank, VD et al. High pressure polymerized phases of C60. Carbon 36319-343 (1998).
Google Scholar
Okada, S. & Saito, S. Electronic and energetic structure of pressure-induced two-dimensional C60 polymers. Phys. Rev. B 591930-1936 (1999).
Google Scholar
Xu, CH & Scuseria, GE Theoretical predictions for a two-dimensional rhombohedral phase of the solid C60. Phys. Rev. Lett. 74274-277 (1995).
Google Scholar
Makarova, TL et al. Magnetic carbon. Nature 413716–718 (2001).
Google Scholar
Tanaka, M. & Yamanaka, S. Vapor phase growth and structural characterization of magnesium Mg-doped two-dimensional fullerene polymer single crystals2VS60. Christ. Growth Dice. 183877–3882 (2018).
Google Scholar
Pekker, S. et al. Monocrystalline (KC60)not: a conductive linear alkaline fulleride polymer. Science 2651077-1078 (1994).
Google Scholar
Porezag, D., Pederson, MR, Frauenheim, T. & Kohler, T. Structure, stability and vibrational properties of polymerized C60. Phys. Rev. B 5214963–14970 (1995).
Google Scholar
Haddon, RC et al. Making C movies60 etc70 by alkaline doping. Nature 350320–322 (1991).
Google Scholar
Wågberg, T. & Sundqvist, B. Raman study of two-dimensional Na polymers4VS60 and tetragonal C60. Phys. Rev. B 65155421 (2002).
Google Scholar
Long, VC et al. Vibrational properties in the far infrared of C high pressure high temperature60 polymers and C60 dimer. Phys. Rev. B 6113191–13201 (2000).
Google Scholar
Chen, Y. et al. Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 30e1800754 (2018).
Google Scholar
Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Common. 54458 (2014).
Google Scholar
#Synthesis #monolayer #fullerene #network #Nature